mlk_man
Banned
imported post
Editors comments. A little less technical:
Poliovirus Infections in Four Unvaccinated Children
References
Editorial Note
The findings in this report are the first identification of a VDPV in the United States and the first occurrence of VDPV transmission in a community since OPV vaccinations were discontinued in 2000.[suP][2-4][/suP] The extent of circulation within the affected community is not yet known. However, the identification of poliovirus infection in the index patient and three other unvaccinated children in a community at high risk for poliovirus transmission raises concerns regarding 1) transmission to other communities with low levels of vaccination and 2) the risk for a polio outbreak occurring in the United States. Potential also exists for transmission of this virus to other immunodeficient persons. Although this VDPV has not been associated with paralytic disease, based on previous experience with VDPVs, the virus is considered to have potential both for wider transmission and for causing paralytic disease.
VDPVs emerge from OPV viruses as a result of 1) their continuous replication in immunodeficient persons (immunodeficiency-associated or iVDPVs) such as the index patient in this investigation or 2) their circulation in populations with low vaccination coverage (circulating or cVDPVs).[suP][1][/suP] During community circulation, cVDPVs often recombine with other species C enteroviruses, which is not characteristic for iVDPVs.[suP][1][/suP] Because polioviruses accumulate nucleotide changes at a constant rate of mutation (approximately 1% per year), the time of replication can be inferred from the degree of divergence.[suP][1][/suP] Because cVDPVs commonly revert to a wild poliovirus phenotype, they can have increased transmissibility and high risk for paralytic disease; cVDPVs have caused outbreaks of poliomyelitis in several countries.[suP][1][/suP] VDPVs in highly immunized populations are rare. Before the VDPV identification in Minnesota, the most recent known VDPV excreter in the United States was a child with SCID (now deceased) who developed vaccine-associated paralytic poliomyelitis in 1995.[suP][4][/suP]
Given the degree of difference (2.3%) from the parent Sabin poliovirus type 1 strain, the virus isolated from the index patient is estimated to have been replicating for approximately 2 years, which means the virus likely is older than the infant. OPV is still widely used in most countries; however, because OPV has not been used in the United States since 2000 and in Canada since 1997, the original source of this virus likely was a person who received OPV in another country. Neither the infant nor her family members had any history of international travel. This virus is not related to other known iVDPVs or to any type 1 cVDPVs that caused outbreaks such as those in Hispaniola during 2000-2001, the Philippines during 2001,[suP][1][/suP] or Indonesia during 2005.
Most poliovirus infections are asymptomatic or cause mild, febrile disease. Poliovirus infections occasionally cause aseptic meningitis and one out of 200 infections from poliovirus type 1 results in paralytic poliomyelitis, characterized by acute onset of flaccid paralysis that is typically asymmetric and associated with a prodromal fever. Poliovirus is spread through fecal material, oral secretions, and fomites. Widespread transmission among vaccinated health-care workers or in a community with high vaccination coverage is unlikely because fully vaccinated persons are not at risk for disease from this or other polioviruses and seldom shed the virus for longer than a week if they are infected. The National Immunization Survey reports that polio vaccination coverage in Minnesota is 93% for children aged 19-35 months and 98% for school-aged children; however, communities of unvaccinated persons exist in Minnesota and many other states.[suP][5][/suP] The risk for transmission in communities with low vaccination coverage is high. The estimated rate of transmission for wild poliovirus among unvaccinated household contacts is 73%-96%.[suP][6][/suP] Contacts between persons in communities with low vaccination coverage pose the potential for transmission of this poliovirus to other communities in the United States, Canada, and other countries.
The last wild poliovirus outbreak in the United States occurred in 1979 and was caused by a wild type 1 poliovirus. In that outbreak, 10 paralytic poliomyelitis cases and four other poliovirus infections occurred among unvaccinated Amish persons and members of other religious communities with low levels of vaccination who lived in Iowa, Missouri, Pennsylvania, and Wisconsin. The source of this outbreak was traced to religious groups in Canada and the Netherlands that also had low levels of vaccination.[suP][7][/suP] A polio outbreak in 1993 in the Netherlands with 71 paralytic cases among members of unvaccinated religious communities also resulted in poliovirus transmission without paralytic disease in Alberta, Canada; no evidence of transmission from this outbreak was found in the United States.[suP][8][/suP]
Persons in communities with low vaccination coverage should be warned of the potential risk for poliomyelitis. States with large communities with low vaccination coverage should identify these communities, assess their current vaccination status, and offer IPV. These states also should establish enhanced or active surveillance for AFP, GBS, and transverse myelitis. Physicians should be aware of and vigilant for poliomyelitis and other causes of AFP in patients. Stool samples, throat swabs, cerebrospinal fluid, and serum should be collected for viral culture and serology from these patients. With evidence of transmission in Minnesota, serologic and/or stool surveys to detect poliovirus type 1 circulation in affiliated communities with low levels of vaccination also should be considered.
IPV, the polio vaccine currently used in the United States, provides immunity against this vaccine-derived poliovirus strain. The Advisory Committee on Immunization Practices (ACIP) recommends that a full 3-dose IPV series be administered on an accelerated schedule if polio immunization status is unknown or not documented.[suP][9][/suP] A booster dose of IPV is recommended for adults in susceptible communities and health-care workers at high risk for exposure who have completed a primary series but have not received an adult booster dose.
Editors comments. A little less technical:
Poliovirus Infections in Four Unvaccinated Children
References
Editorial Note
The findings in this report are the first identification of a VDPV in the United States and the first occurrence of VDPV transmission in a community since OPV vaccinations were discontinued in 2000.[suP][2-4][/suP] The extent of circulation within the affected community is not yet known. However, the identification of poliovirus infection in the index patient and three other unvaccinated children in a community at high risk for poliovirus transmission raises concerns regarding 1) transmission to other communities with low levels of vaccination and 2) the risk for a polio outbreak occurring in the United States. Potential also exists for transmission of this virus to other immunodeficient persons. Although this VDPV has not been associated with paralytic disease, based on previous experience with VDPVs, the virus is considered to have potential both for wider transmission and for causing paralytic disease.
VDPVs emerge from OPV viruses as a result of 1) their continuous replication in immunodeficient persons (immunodeficiency-associated or iVDPVs) such as the index patient in this investigation or 2) their circulation in populations with low vaccination coverage (circulating or cVDPVs).[suP][1][/suP] During community circulation, cVDPVs often recombine with other species C enteroviruses, which is not characteristic for iVDPVs.[suP][1][/suP] Because polioviruses accumulate nucleotide changes at a constant rate of mutation (approximately 1% per year), the time of replication can be inferred from the degree of divergence.[suP][1][/suP] Because cVDPVs commonly revert to a wild poliovirus phenotype, they can have increased transmissibility and high risk for paralytic disease; cVDPVs have caused outbreaks of poliomyelitis in several countries.[suP][1][/suP] VDPVs in highly immunized populations are rare. Before the VDPV identification in Minnesota, the most recent known VDPV excreter in the United States was a child with SCID (now deceased) who developed vaccine-associated paralytic poliomyelitis in 1995.[suP][4][/suP]
Given the degree of difference (2.3%) from the parent Sabin poliovirus type 1 strain, the virus isolated from the index patient is estimated to have been replicating for approximately 2 years, which means the virus likely is older than the infant. OPV is still widely used in most countries; however, because OPV has not been used in the United States since 2000 and in Canada since 1997, the original source of this virus likely was a person who received OPV in another country. Neither the infant nor her family members had any history of international travel. This virus is not related to other known iVDPVs or to any type 1 cVDPVs that caused outbreaks such as those in Hispaniola during 2000-2001, the Philippines during 2001,[suP][1][/suP] or Indonesia during 2005.
Most poliovirus infections are asymptomatic or cause mild, febrile disease. Poliovirus infections occasionally cause aseptic meningitis and one out of 200 infections from poliovirus type 1 results in paralytic poliomyelitis, characterized by acute onset of flaccid paralysis that is typically asymmetric and associated with a prodromal fever. Poliovirus is spread through fecal material, oral secretions, and fomites. Widespread transmission among vaccinated health-care workers or in a community with high vaccination coverage is unlikely because fully vaccinated persons are not at risk for disease from this or other polioviruses and seldom shed the virus for longer than a week if they are infected. The National Immunization Survey reports that polio vaccination coverage in Minnesota is 93% for children aged 19-35 months and 98% for school-aged children; however, communities of unvaccinated persons exist in Minnesota and many other states.[suP][5][/suP] The risk for transmission in communities with low vaccination coverage is high. The estimated rate of transmission for wild poliovirus among unvaccinated household contacts is 73%-96%.[suP][6][/suP] Contacts between persons in communities with low vaccination coverage pose the potential for transmission of this poliovirus to other communities in the United States, Canada, and other countries.
The last wild poliovirus outbreak in the United States occurred in 1979 and was caused by a wild type 1 poliovirus. In that outbreak, 10 paralytic poliomyelitis cases and four other poliovirus infections occurred among unvaccinated Amish persons and members of other religious communities with low levels of vaccination who lived in Iowa, Missouri, Pennsylvania, and Wisconsin. The source of this outbreak was traced to religious groups in Canada and the Netherlands that also had low levels of vaccination.[suP][7][/suP] A polio outbreak in 1993 in the Netherlands with 71 paralytic cases among members of unvaccinated religious communities also resulted in poliovirus transmission without paralytic disease in Alberta, Canada; no evidence of transmission from this outbreak was found in the United States.[suP][8][/suP]
Persons in communities with low vaccination coverage should be warned of the potential risk for poliomyelitis. States with large communities with low vaccination coverage should identify these communities, assess their current vaccination status, and offer IPV. These states also should establish enhanced or active surveillance for AFP, GBS, and transverse myelitis. Physicians should be aware of and vigilant for poliomyelitis and other causes of AFP in patients. Stool samples, throat swabs, cerebrospinal fluid, and serum should be collected for viral culture and serology from these patients. With evidence of transmission in Minnesota, serologic and/or stool surveys to detect poliovirus type 1 circulation in affiliated communities with low levels of vaccination also should be considered.
IPV, the polio vaccine currently used in the United States, provides immunity against this vaccine-derived poliovirus strain. The Advisory Committee on Immunization Practices (ACIP) recommends that a full 3-dose IPV series be administered on an accelerated schedule if polio immunization status is unknown or not documented.[suP][9][/suP] A booster dose of IPV is recommended for adults in susceptible communities and health-care workers at high risk for exposure who have completed a primary series but have not received an adult booster dose.